Strong Locally Testable Codes with Relaxed Local Decoders

نویسندگان

  • Oded Goldreich
  • Tom Gur
  • Ilan Komargodski
چکیده

Locally testable codes (LTCs) are error-correcting codes that admit very efficient codeword tests. An LTC is said to be strong if it has a proximity-oblivious tester; that is, a tester that makes only a constant number of queries and reject non-codewords with probability that depends solely on their distance from the code. Locally decodable codes (LDCs) are complimentary to LTCs. While the latter allow for highly efficient rejection of strings that are far from being codewords, LDCs allow for highly efficient recovery of individual bits of the information that is encoded in strings that are close to being codewords. While there are known constructions of strong-LTCs with nearly-linear length, the existence of a constant-query LDC with polynomial length is a major open problem. In an attempt to bypass this barrier, Ben-Sasson et al. (SICOMP 2006) introduced a natural relaxation of local decodability, called relaxed-LDCs. This notion requires local recovery of nearly all individual information-bits, yet allows for recovery-failure (but not error) on the rest. Ben-Sasson et al. constructed a constant-query relaxed-LDC with nearly-linear length (i.e., length k for an arbitrarily small constant α > 0, where k is the dimension of the code). This work focuses on obtaining strong testability and relaxed decodability simultaneously. We construct a family of binary linear codes of nearly-linear length that are both strong-LTCs (with one-sided error) and constant-query relaxed-LDCs. This improves upon the previously known constructions, which obtain either weak LTCs or require polynomial length. Our construction heavily relies on tensor codes and PCPs. In particular, we provide strong canonical PCPs of proximity for membership in any linear code with constant rate and relative distance. Loosely speaking, these are PCPs of proximity wherein the verifier is proximity oblivious (similarly to strong-LTCs) and every valid statement has a unique canonical proof. Furthermore, the verifier is required to reject non-canonical proofs (even for valid statements). As an application, we improve the best known separation result between the complexity of decision and verification in the setting of property testing. ∗This research was partially supported by the Minerva Foundation with funds from the Federal German Ministry for Education and Research. †Research supported in part by a grant from the I-CORE Program of the Planning and Budgeting Committee, the Israel Science Foundation and the Citi Foundation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Locally Testable Codes and Products of Codes

We continue the investigation of locally testable codes, i.e., error-correcting codes for whom membership of a given word in the code can be tested probabilistically by examining it in very few locations. We give two general results on local testability: First, motivated by the recently proposed notion of robust probabilistically checkable proofs, we introduce the notion of robust local testabi...

متن کامل

Short Locally Testable Codes and Proofs: A Survey in Two Parts

We survey known results regarding locally testable codes and locally testable proofs (known as PCPs), with emphasis on the length of these constructs. Local testability refers to approximately testing large objects based on a very small number of probes, each retrieving a single bit in the representation of the object. This yields super-fast approximate-testing of the corresponding property (i....

متن کامل

Low Rate Is Insufficient for Local Testability

Locally testable codes are error-correcting codes for which membership of a given word in the code can be tested probabilistically by examining it in very few locations. A linear code C ⊆ F2 is called sparse if dim(C) = O(log(n)). We say that a code C ⊆ F2 is -biased if all nonzero codewords of C have relative weight in the range ( 1 2 − , 1 2 + ), where may be a function of n. Kaufman and Suda...

متن کامل

Local Testing and Decoding of High-Rate Error-Correcting Codes∗

We survey the state of the art in constructions of locally testable codes, locally decodable codes and locally correctable codes of high rate.

متن کامل

Towards Lower Bounds on Locally Testable Codes

1 Abbreviations and Notations 3 1 General Introduction 4 1.1 PCP theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Property Testing . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Locally Testable Codes . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Random locally testable codes . . . . . . . . . . . . . 6 1.3.2 Algebraic Construction of LTCs . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014